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Abstract. We present here an investigation of the irradiation-induced swelling of SiC using Classical Molec-
ular Dynamics simulations. Heavy ion irradiation has been assumed to affect the material in two steps:
(a) creation of local atomic disorder, modeled by the introduction of extended amorphous areas with var-
ious sizes and shapes in a crystalline SiC sample at constant volume (b) induced swelling, determined
through relaxation using Molecular Dynamics at constant pressure. This swelling has been computed as a
function of the amorphous fraction introduced. Two different definitions of the amorphous fraction were
introduced to enable meaningful comparisons of our calculations with experiments and elastic modeling.
One definition based on the displacements relative to the ideal lattice positions was used to compare
the Molecular Dynamics results with data from experiments combining ion implantations and channeled
Rutherford Backscattering analyses. A second definition based on atomic coordination was used to compare
the Molecular Dynamics results to those yielded by a simplified elastic model. The simulation results using
the lattice-based definition of the amorphous fraction compare very well with the experimental results.
This proves that the modeling in two steps chosen for the creation of the amorphous regions is reason-
able. Moreover, the results show very clearly that SiC swelling does not scale linearly with the amorphous
fraction introduced. Two swelling regimes are observed relatively to the size of the amorphous area. Com-
parison of the elastic model with the Molecular Dynamics results using the coordination-based definition
of the amorphous fraction has also enabled us to shed light on the swelling mechanisms and has shown
that amorphization-induced swelling exhibits an elastic behavior. Furthermore, scalings for the swelling
as a function of the two amorphous fractions considered, which can be used by larger scale models, have
been determined. Finally, our study shows that classical Molecular Dynamics calculations enable one to
connect the results of the available experiments with the elastic calculations and to get further insight into
the swelling mechanisms.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 61.80.Jh Ion radiation effects –
62.20.Dc Elasticity, elastic constants

1 Introduction

The evolution of structural and mechanical properties of
materials in high-radiation environment is a significant
issue in nuclear applications. In particular, irradiation-
induced swelling has important consequences which can
affect considerably the material performance. Numerous
experimental studies of volume changes in ceramics un-
der irradiation have been published over the years [1].
For example, ion implantation experiments combined with
Rutherford Backscattering analysis [2,3] have been per-
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formed on silicon carbide. These studies tend to show
that material swelling under irradiation is a complex phe-
nomenon. In particular, SiC swelling does not depend lin-
early on the disorder created in the material, but exhibits
two different scalings as a function of this disorder. The
atomic-scale mechanisms behind this scaling change are
not well understood.

Several processes at various scales take part to this
swelling: creation of point defects, local amorphization,
intra or intergranular void creation, gas formation. . . The
creation and migration of point defects in semiconduc-
tors and particularly SiC have been studied extensively
using empirical [4–7] or ab initio methods [8–12]. On the
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contrary, there are very few studies on the influence of the
creation of extended disordered or amorphous zones on the
material swelling [13,14] and it is currently the least well
known atomic-scale component of the irradiation-induced
swelling. Atomistic modeling enables us to separate the
various phenomena and can therefore be a powerful tool to
shed light on their respective influences. The present study
focuses on amorphization-induced swelling. We are par-
ticularly interested in getting further insight into atomic-
scale mechanisms, as well as in determining a scaling law
of this swelling as a function of the fraction of amorphous
material created. Such a law could be used in multiscale
models of materials behavior under irradiation.

In this study heavy ion irradiation is assumed to induce
only local amorphization, and to affect the material in two
successive steps: (1) creation of local amorphous disorder
at constant volume, (2) volume relaxation and induced
swelling. A preliminary study of amorphization-induced
swelling using this methodology has been published pre-
viously [15]. The results of this study have shown that
the modeling chosen is able to reproduce the available ex-
perimental results, in particular the two regimes observed
in the evolution of the volume change as a function of
the amorphous fraction introduced. The precise swelling
mechanisms, as well as the influence of the structure of the
interface and of the amorphous area, however, were not
completely elucidated. The aim of the present paper is to
answer the open questions left by this preliminary study,
and in particular determine the swelling mechanisms. To
this aim we have considered a more physical amorphiza-
tion method as in the previous study, and have determined
the swelling obtained as a function of the disorder intro-
duced. We have also performed continuum calculations
using an elastic model. We have finally compared the re-
sults yielded by the Classical Molecular Dynamics and the
elastic calculations to the experimental results.

The outline of the paper is as follows. We expose first
the computational details: choice of atomistic modeling,
amorphization method, possible definitions for the amor-
phous fraction introduced, as well as description of the
elastic calculations. Then we present the results obtained
on the swelling as a function of the amorphous fraction
introduced, and finally the conclusions of the comparison
with the experimental and elastic results.

2 Computational details

2.1 Atomistic modeling chosen

We must first choose a methodology for the investigation.
We want to study the swelling induced by the introduction
of various fractions of amorphous material ranging from a
few percent to over half of amorphous material. The sys-
tem considered must therefore be large enough to enable
the introduction, on the one hand of very small fractions
of disordered material but containing enough atoms to be
amorphous, and on the other hand large amorphous frac-
tions while avoiding spurious interactions between images

in the periodic representation. A simulation box contain-
ing several thousands of atoms is therefore necessary. Sec-
ond, given the various amorphous fractions to consider,
our study implies a rather large number of simulations.
Third, to investigate the swelling mechanisms, we need a
dynamical method to follow the system evolution in time
over a few picoseconds. The combination of number of
calculations, size of simulation box, and simulation times
excludes at the moment an ab initio treatment. Further-
more, successful empirical potentials have been developed
for SiC, in particular Tersoff potentials [16], which enable
the accurate study of defects in SiC using Classical Molec-
ular Dynamics simulations [17–19]. We have therefore cho-
sen to use a Classical Molecular Dynamics approach.

2.2 Molecular Dynamics code and empirical potential

All simulations reported herein were carried out using the
Molecular Dynamics simulation code XMD. This code has
been developed by Rifkin and is freely available on the
web [20]. This code enables both constant volume and
constant pressure isothermal simulations (in NVT and
NPT ensembles) under periodic boundary conditions. The
timestep chosen is 0.1 fs at 5500 K and 0.25 fs at 300 K.
The temperature control is achieved by a clamp algorithm
involving a rescaling of the velocities. Similarly, the pres-
sure control is achieved by a pressure clamp algorithm,
i.e. internal stress calculations and rescaling of the lattice
parameters. Furthermore, it is possible to apply different
temperature and pressure conditions in different parts of
the system.

Besides, the XMD code allows the use of different in-
teratomic potentials. We have decided to use Tersoff po-
tentials, which enable a good description of crystalline [16]
and amorphous [21] SiC. The 89’ version of the Tersoff po-
tential [16] is implemented in the program, and we have
added the 94’ version [21] to test the influence of the
potential parametrization on our results. No qualitative
difference is observed between the two series of simula-
tions. Therefore only the results obtained with the 89’
parametrization are presented here.

2.3 Local amorphization and relaxation

The introduction of the amorphous area was performed
by amorphizing the central area of the supercell in situ
at constant volume. To do this we have separated the
system in two sub-systems. To free ourselves from bor-
der and corner effects in the interface between the crys-
talline and amorphous areas, central areas with spherical
and cubic shape have been considered. The central area is
melted at 5500 K during 60 ps and is then cooled down to
300 K using a velocity rescaling over 33 timesteps. It be-
comes amorphous. We have checked that the amorphous
structure obtained is independent from the scheme used to
lower the temperature. The same properties were obtained
using a formal quenching scheme (velocity of atoms put to
zero as soon as their energy increases) or by a clamp over
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Fig. 1. Composite sample obtained in the case of a spherical
in situ melted quenched zone. Large and small spheres repre-
sent Si and C atoms, respectively. Color coding is done accord-
ing to coordination number: blue, red, and green correspond
to coordination numbers four, five, and three, respectively.

333 timesteps. The parameters chosen allow for the short-
est relaxation time, the equilibrium at 300 K is reached in
approximately 5 ps. The outside area is first fixed at 0 K
during the first 60 ps, then relaxed to 300 K using the same
clamp scheme as the amorphous zone, and remains crys-
talline. In this manner the crystalline part of the material
is taken into account during the amorphization of the cen-
tral region. The interface produced is therefore different
from the interface yielded by the “cut-paste” method used
in the preliminary study [15], and should give a better rep-
resentation of the system physics. The composite sample
obtained in the case of a spherical in situ melted quenched
zone has been represented in Figure 1 using the AtomEye
software [22]. On this figure large and small spheres rep-
resent Si and C atoms, respectively. Color coding is done
according to coordination number: blue, red, and green
correspond to coordination numbers four, five, and three,
respectively.

The composite samples obtained are finally allowed to
relax in NPT ensemble at 300 K for 400 ps.

2.4 Simulation box and amorphous fractions
considered

We have chosen a simulation box with initial dimension
V 0 = 10 a × 10 a × 10 a, where a is the β-SiC lattice pa-
rameter at 0 K and equal to 4.32 Å in the potential used.
The simulation box contains a constant number of atoms:
8000. Thanks to the periodic boundary conditions used in
the program this enables us to model a perfect and infi-
nite SiC monocrystal. The amorphous fractions considered
vary from a few percents to about 60%. These fractions are
the highest amorphous fractions that can be introduced in

the supercell if we want to avoid spurious interactions be-
tween images in the Periodic Boundary Conditions.

2.5 Elastic model

In order to elucidate the swelling mechanisms we have
compared the Molecular Dynamics results with the elas-
tic theory. To this aim we have studied using elastic theory
the simplified case of a sphere of amorphous material in-
cluded in a hollow sphere of crystalline material with no
surface tension at the interface. Both materials are sup-
posed to be homogeneous and isotropic. The system con-
sidered is represented in Figure 2. The volumes of amor-
phous and crystalline materials are respectively Va and
Vc, and the total volume is:

V = Va + Vc, (1)

which is V 0 initially. An external pressure pc equal to zero
is applied to the system.

Fig. 2. Amorphous sphere of radius Ra included in a crys-
talline sphere of radius Rc.

Before volume relaxation the density in the two parts
of the system is the same and equal to the crystalline den-
sity at rest ρr

c. After relaxation, the density of the amor-
phous phase becomes ρf

a inducing a pressure pa within this
sphere, and a swelling of the total system. This swelling
is characterized by the relative volume change:

∆V

V 0
=

V f − V 0

V 0
(2)

where superscripts 0 and f denote the initial and final
states of the system.

The volume change can be obtained by solving the
equilibrium equation of the system. The swelling can then
be expressed as a function of the volumic amorphous frac-
tion in the initial state φ0 defined as:

φ0 =
V 0

a

V 0
, (3)
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of the densities ρr
a and ρr

c of the amorphous and crystalline
materials at rest, respectively, as well as of the bulk and
shear moduli, Ka, Kc and Gc. The details of the model
developed for this study and of the calculations are re-
ported in the appendix. The final expression obtained for
the swelling of the system is:

∆V

V 0
=

(ρr
c − ρr

a)Ka (3 Kc + 4 Gc)φ0

Kc (4 ρr
c Gc + 3 ρr

a Ka) + 4 Gc (ρr
a Ka − ρr

c Kc)φ0
.

(4)
The elastic moduli Kc, Gc, Ka, the densities ρr

c , ρr
a were

calculated at 300 K using the implementation of clas-
sical Molecular Dynamics and the parameters described
in section 2.2. A totally amorphous sample with size
V 0 = 10 a × 10 a × 10 a, was prepared in melting and
quenching, then allowed to relax at constant pressure over
400 ps. The cell parameter was averaged on the 5000 final
timesteps to allow for volume relaxation. The density ρr

a

is then calculated using the cell parameter obtained. The
elastic moduli have been determined numerically. The cell
volumes for the crystal and for an amorphous sample pre-
pared as described above have been determined for various
pressures. The bulk moduli were then calculated according
to the definition:

1
K

= − 1
V

dV

dP
. (5)

The values obtained can be found in Table 1.

Table 1. Values of the parameters of the elastic calculations
Kc, Ka, Gc, ρr

c and ρr
a yielded by the Molecular Dynamics

simulations.

Kc (GPa) Ka (GPa) Gc (GPa) ρr
c (kgm−3) ρr

c (kgm−3)
300 180 195 3.26 2.95

2.6 Definition of the amorphous fraction introduced

The objective of our investigation is to determine the rel-
ative volume change ∆V/V 0, or swelling, induced by the
introduction of amorphous areas with various sizes in the
material. The swelling expression is given by equation (2).
The crucial point is then to determine the proportion of
amorphous material. It is not straightforward, however,
since there is no unequivocal definition of an amorphous
atom, the amorphous state being essentially a collective
property. To determine the amorphous fraction as pre-
cisely as possible we have therefore chosen to use two dif-
ferent definitions of an amorphous atom. The first defi-
nition of the amorphous fraction, referred to as the lat-
tice amorphous fraction falattice, is based on the analysis
of the positions of the atoms in the configuration after
relaxation compared to their ideal positions in the per-
fect crystal lattice. We consider as amorphous each atom
i for which the atomic displacement relative to the lat-
tice site is greater than a threshold distance α. This dis-
placement is calculated as dr = |ri − r0

i |, where ri is the

Fig. 3. dr = |ri−r0
i | distribution of atomic positions in β−SiC

at 300 K.

position in the sample after relaxation and r0
i the ideal

lattice position in a crystal with the same lattice parame-
ter as the relaxed cell. Based on the |ri − r0

i | distribution
of atomic positions in β−SiC at 300 K represented in Fig-
ure 3, we have chosen α = 0.16 Å. This definition may
theoretically underestimate the amorphous fraction since
an amorphous atom can by chance sit on a lattice site. But
this is very rare in practice, and falattice = 99.9% ≈ 100%
for a fully amorphous cell obtained by a melting-quench
process. The main objective of this amorphous fraction
definition is to enable a direct comparison with the results
from Rutherford Back Scattering (RBS) experiments on
irradiated SiC-samples. In RBS combined with channeling
techniques the monocrystalline substrate is aligned with
the incident ion beam. The backscattering yield then de-
pends on the fraction of atoms which are not in lattice
sites, and the disordered fraction determined in these ex-
periments is then based on a position criterion. The lattice
amorphous fraction is computed after volume relaxation
to be consistent with the experiments, which can only ac-
cess the final state.

The second definition, referred to as the coordination
amorphous fraction facoord, is based on the analysis of
the atomic coordination numbers. The coordination num-
bers are calculated using a distance criterion: C–C, C–Si
and Si–Si bonds are considered to be formed if the two
atoms involved are closer than 1.70, 2.10, and 2.80 Å, re-
spectively. These thresholds were determined through the
analysis of the distance distributions in various Si–C sys-
tems. Then only atoms exhibiting exactly four heteronu-
clear bonds and no homonuclear bond are considered crys-
talline, all the others being amorphous. We have checked
that taking into account bond angles does not modify the
value of facoord. This definition seems the most physical
since it is based on interatomic interactions and bonding,
which is at the origin of the materials properties. It is
not perfect, however, since an atom can exhibit an ideal
first coordination sphere, but no order in its second coor-
dination sphere. Such an atom will be wrongly considered
as crystalline using this second definition. But facoord is
equal to 96% in the case of a fully amorphous cell ob-
tained by a melting-quench process, the discrepancy is
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therefore limited. This definition will enable us to com-
pare the atomistic results with the elastic results since in
the latter the amorphous area is characterized by elastic
and density properties different from the crystalline ones.
It is reasonable to assume that these properties depend at
the atomic scale on the nature and number of interatomic
interactions, i.e. on the atomic coordination properties.
Furthermore, as seen in the description of the elastic cal-
culations the parameter considered in these calculations
is the initial volumic amorphous fraction. This fraction
is equal to the initial atomic fraction since the densities
of the crystalline and amorphous materials are equal be-
fore volume relaxation. To enable the comparison with the
elastic results the coordination amorphous fraction is then
determined before relaxation. In these conditions:

facoord = φ0(elastic). (6)

We then calculate the amorphous fraction as the ratio
of the number of amorphous atoms over the total num-
ber of atoms in the simulation box. Both the coordination
and lattice amorphous fractions are estimated, compared,
and the swelling as a function of both amorphous fractions
is determined.

3 Results on swelling as a function
of the amorphous fraction

3.1 Swelling as a function of falattice: comparison
with experiments

No qualitative difference, and very slight quantitative dif-
ferences are observed in the swelling induced by the in-
troduction of a cubic or spherical amorphous zone. In
the following we will discuss the results obtained in the
case of the spherical in situ melted-quenched amorphous
zone. Figure 4 shows the relative volume change ∆V/V 0

as a function of the disorder amount determined after re-
laxation (a) in our Molecular Dynamics simulations in
the case of spherical in situ melted-quenched amorphous
zones, and (b) in the ion implantation experiments by
Nipoti et al. [3].

On the experimental curve the disorder amount is ex-
pressed as the integral of displaced atoms. This parameter
is determined from Rutherford Back Scattering spectra
using various channeling approximations, and is assumed
to be proportional to the fraction of amorphous material.
We have compared these results with the volume variation
as a function of falattice. The Molecular Dynamics results
compare very well with the experimental curve. Two dif-
ferent regimes with similar relative slopes are observed in
the two curves. This is consistent with the results of the
preliminary study [15]. The linear scaling laws giving the
swelling as a function of the lattice amorphous fraction for
the two regimes are as follows:

For falattice ≤ 30.5%, ∆V/V 0 = 6.62.10−2falattice (7)

For falattice > 30.5%, ∆V/V 0 = 0.1105falattice − 1.351.
(8)
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Fig. 4. Comparison of swelling as a function of falattice yielded
by (a) Classical Molecular Dynamics in the case of the spherical
amorphous zone, and (b) in the ion implantation and RBS
experiments by Nipoti [3].

As a conclusion, the model of the irradiation effect in two
steps is reasonable, and the empirical Tersoff potential
yields good results for the systems considered. Finally, the
melting-quench amorphization enables us to reproduce the
experimental results.

We have then analyzed our results as a function of
the coordination amorphous fraction facoord. Since this
fraction relies on chemical and coordination criteria this
will enable us to get further insight into the mechanisms
involved in swelling and on the chemical evolution during
this swelling.

3.2 Swelling as a function of facoord : comparison
with the elastic model

The coordination amorphous fraction is the adequate def-
inition to compare the atomistic and elastic approaches.
Furthermore, the elastic calculations consider a spheri-
cal amorphous inclusion, and the elastic constants and
densities have been computed using a melted-quenched
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Fig. 5. Comparison of swelling as a function of facoord yielded
by Classical Molecular Dynamics and elastic calculations.

amorphous material. We have therefore compared the elas-
tic results to the Molecular Dynamics results obtained in
the case of spherical in situ melted-quenched amorphous
zones. Figure 5 shows the volume change as a function of
the amorphous fraction yielded by the elastic calculations
and the Molecular Dynamics simulations.

As can be seen on this figure the two methods are in
excellent agreement. Furthermore, the coordination amor-
phous fraction remains approximately constant during
volume relaxation. These two results suggest an elastic
behavior of the material during relaxation. An elastic be-
havior had been excluded in the preliminary study [15] be-
cause it was unable to reproduce the two swelling regimes
observed in the channeled RBS experiments. The use of
two different definitions of the amorphous fraction intro-
duced has therefore enabled us to reconcile the results of
the available experiments with those of the elastic calcula-
tions. Given the very good agreement between the elastic
and Molecular Dynamics results, the elastic law is chosen
for the scaling law giving the swelling as a function of the
coordination amorphous fraction. The resulting law ob-
tained in replacing the values from Table 1 in equation (4)
is as follows:

∆V

V 0
=

α facoord

β + γ facoord

, (9)

with α = 9.3744 × 104, β = 1.24074 × 106 and γ =
−3.4866× 105.

3.3 Difference of behavior as a function
of the two amorphous fractions

There is an apparent contradiction between the results as
a function of the lattice and amorphous fractions. If we
look more closely into the difference between the two def-
initions, it is first observed that falattice is larger than
facoord for all facoord. The absolute difference between
falattice and facoord is between 10 and 20%, and is there-
fore larger than the small difference observed in the to-
tally amorphized material. This means that a significant

Fig. 6. Variations of the two amorphous fractions throughout
the simulation box for two sizes of cubic amorphous zones.

number of atoms shifted from their ideal lattice sites keep
a crystalline coordination. Second, the relative difference
∆fa/fa defined as (falattice − facoord)/facoord decreases
when the amorphous fraction increases. Two regimes are
observed in the ∆fa/fa variation as a function of facoord:
one with large slope for small amorphous fractions, and a
second one for large amorphous fractions with a smaller
slope. These two regimes explain why the swelling exhibits
two regimes as a function of the lattice amorphous frac-
tion, but only one as a function of the coordination amor-
phous fraction.

Figure 6 represents the variations of the two amor-
phous fractions throughout the simulation box for two
sizes of cubic in situ amorphous zones.

It is seen that the differences between the two defini-
tions are concentrated in the interface between the amor-
phous and the crystalline areas. This is confirmed by the
visual analysis of the atomic configurations done with the
AtomEye software [22]. This explains why the relative
difference decreases with increasing amorphous fraction,
since the relative proportion of atoms at the interface de-
creases when the size of the amorphous area increases.
This also shows that the differences observed in the ex-
perimental and elastic results are derived from the differ-
ence in the description of the interface area. The lattice
amorphous fraction describes the interface as larger and
more amorphous, while the coordination amorphization
fraction shows it to be more localized and crystalline. In
the case of the introduction of a cubic amorphous zone,
natural crystallographic directions are respected, and less
four-time coordinated atoms are displaced from their ideal
lattice site than in the case of a spherical amorphous zone.
The difference between the two definitions is then smaller.

4 Conclusion

The introduction of an amorphous area in crystalline
β-SiC through irradiation and the induced swelling have
been investigated using classical Molecular Dynamics. The
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swelling has been studied as a function of the amorphous
fraction introduced.

Comparison with the experiments proves that the
modeling chosen for the local amorphization is reasonable,
and that the empirical Tersoff potential yields good results
for the systems considered. Comparison with an elastic
model shows that the amorphization-induced swelling ex-
hibits an elastic behavior. This result should be confirmed
by a thorough analysis of the disorder created and its evo-
lution during relaxation.

The results yielded by the use of two different defi-
nitions for the amorphous fraction introduced underlines
the crucial importance of the definition of the amorphous
state at the atomic scale. This definition must be precise
and adapted to the phenomena investigated. Furthermore,
scalings for the swelling as a function of the two amor-
phous fractions considered, which can be used by larger
scale models, have been determined. Finally, our study
shows that Classical Molecular Dynamics calculations en-
able one to connect the results of the available experiments
with the elastic calculations and to get further insight into
the swelling mechanisms.

Appendix A: Elastic modeling

The equilibrium equation of a homogeneous isotropic hol-
low sphere with an internal pressure pa can be found in
basic books of Mechanics. Landau and Lifshitz [23] for
instance give the displacement field u within the hollow
sphere as a function of the radius r in the sphere. It de-
pends on the internal and external radii, the Young mod-
ulus Ec, and the Poisson coefficient νc of the sphere. Us-
ing the same notations as in Section 2.5 where the super-
scripts 0 and f denote the initial and final states of the
system the expression of u reads:

u = rf − r0 = a r0 +
b

r02 (10)

with a =
pa R0

a
3

R0
c
3 − R0

a
3

1 − 2 νc

Ec
(11)

and b =
pa R0

a
3
R0

c
3

R0
c
3 − R0

a
3

1 + νc

Ec
. (12)

Applying this formula to the internal and external radii
Ra and Rc, with the help of the definition of φ0 given by
equation (3) and of the correspondences between elastic
parameters for an isotropic material:

Gc =
Ec

2 (1 + νc)
(13)

Kc =
Ec

3 (1 − 2 νc)
, (14)

we obtain the expression of the radius changes as follows:

Rf
c = R0

c

[
1 +

pa

1 − φ0

(
φ0

3Kc
+

φ0

4Gc

)]
(15)

Rf
a = R0

a

[
1 +

pa

1 − φ0

(
φ0

3Kc
+

1
4Gc

)]
. (16)

Equation (15) enables us to obtain the total swelling:

∆V

V 0
=

V f − V 0

V 0
=

(
Rf

c

R0
c

)3

− 1 ≈ 3
Rf

c − R0
c

R0
c

=
φ0

(1 − φ0)

(
3

4 Gc
+

1
Kc

)
pa, (17)

and equation (16) the swelling of the amorphous sphere:

V f
a

V 0
a

=
(

Rf
a

R0
a

)3

≈ 1 + 3
(

Rf
a − R0

a

R0
a

)

= 1 +
1

(1 − φ0)

(
3

4 Gc
+

φ0

Kc

)
pa. (18)

Furthermore, mass is conserved in the amorphous sphere
during volume relaxation, so that:

ρf
aV f

a = ρr
cV

0
a . (19)

Combined with equation (18), it yields:

ρr
c

ρf
a

= 1 +
1

(1 − φ0)

(
3

4 Gc
+

φ0

Kc

)
pa. (20)

Let now V r
a be the volume of the amorphous sphere at

rest, that is the volume the amorphous sphere would have
without pressure (pa = 0). It is related to the correspond-
ing amorphous density ρr

a by the expression:

ρf
aV f

a = ρr
aV r

a . (21)

This equation allows us to write the amorphous constitu-
tive equation in terms of densities:

pa = −Ka

(
V f

a − V r
a

V r
a

)
= −Ka

(
ρr

a

ρf
a

− 1
)

, (22)

where Ka is the amorphous bulk modulus.
The combination of equations (20), (22), and (17) fi-

nally gives the pressure pa and the total swelling as func-
tions of the initial volumic amorphous fraction φ0:

pa =
(1 − φ0) (ρr

c − ρr
a) 4 Ka Gc Kc

ρr
c (1 − φ0) 4 Gc Kc + Ka ρr

a (3 Kc + 4 Gc φ0)
(23)

∆V

V 0
=

φ0 (ρr
c − ρr

a)Ka (3 Kc + 4 Gc)
ρr

c (1 − φ0) 4 Gc Kc + Ka ρr
a (3 Kc + 4 Gc φ0)

.

(24)
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